Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Professor Jian Zhen Yu (Ed.)using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm 3 s 1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazonia rainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols.more » « less
-
Abstract Observational data from two field campaigns in the Amazon forest were used to study the vertical structure of turbulence above the forest. The analysis was performed using the reduced turbulent kinetic energy (TKE) budget and its associated two-dimensional phase space. Results revealed the existence of two regions within the roughness sublayer in which the TKE budget cannot be explained by the canonical flat-terrain TKE budgets in the canopy roughness sublayer or in the lower portion of the convective ABL. Data analysis also suggested that deviations from horizontal homogeneity have a large contribution to the TKE budget. Results from LES of a model canopy over idealized topography presented similar features, leading to the conclusion that flow distortions caused by topography are responsible for the observed features in the TKE budget. These results support the conclusion that the boundary layer above the Amazon forest is strongly impacted by the gentle topography underneath.more » « less
An official website of the United States government
